Conductance asymmetry of a slot gate Si - MOSFET in a strong parallel magnetic field
نویسنده
چکیده
We report measurements on a Si-MOSFET sample with a slot in the upper gate, allowing for different electron densities n1,2 across the slot. The dynamic longitudinal resistance was measured by the standard lock-in technique, while maintaining a large DC current through the source-drain channel. We find that the conductance of the sample in a strong parallel magnetic field is asymmetric with respect to the DC current direction. This asymmetry increases with magnetic field. The results are interpreted in terms of electron spin accumulation or depletion near the slot.
منابع مشابه
Abstract Submitted for the MAR11 Meeting of The American Physical Society Measurement of Tunneling Conductance of Two-Dimensional Electrons in a Si MOSFET Nanostructure
Submitted for the MAR11 Meeting of The American Physical Society Measurement of Tunneling Conductance of Two-Dimensional Electrons in a Si MOSFET Nanostructure HONG PAN, MATTHEW HOUSE, MING XIAO, HONGWEN JIANG — The properties of strongly correlated twodimensional electrons in semiconductor heterostructure continue to be of a fundamental interest of condensed matter physics [1]. A collection of...
متن کاملA Novel Hybrid Nano Scale MOSFET Structure for Low Leak Application
In this paper, novel hybrid MOSFET(HMOS) structure has been proposed to reduce the gate leakage current drastically. This novel hybrid MOSFET (HMOS) uses source/drain-to-gate non-overlap region in combination with high-K layer/interfacial oxide as gate stack. The extended S/D in the non-overlap region is induced by fringing gate electric field through the high-k dielectric spacer. The gate leak...
متن کاملHigh-Speed Penternary Inverter Gate Using GNRFET
This paper introduces a new design of penternary inverter gate based on graphene nanoribbon field effect transistor (GNRFET). The penternary logic is one of Multiple-valued logic (MVL) circuits which are the best substitute for binary logic because of its low power-delay product (PDP) resulting from reduced complexity of interconnects and chip area. GNRFET is preferred over Si-MOSFET for circui...
متن کاملStrained-Si single-gate versus unstrained-Si double-gate MOSFETs
Self-consistent full-band Monte Carlo simulations are employed to compare the performance of nanoscale strained-Si single-gate (SG) and unstrained-Si double-gate (DG) MOSFETs for a gate length of 25 nm. Almost the same on-current as in the DG-MOSFET can be achieved by strain in a SG-MOSFET for the same gate overdrive. This is due to the compensation of the higher electron sheet density in the t...
متن کاملDesign of a Resonant Suspended Gate MOSFET with Retrograde Channel Doping
High Q frequency reference devices are essential components in many Integrated circuits. This paper will focus on the Resonant Suspended Gate (RSG) MOSFET. The gate in this structure has been designed to resonate at 38.4MHz. The MOSFET in this device has a retrograde channel to achieve high output current. For this purpose, abrupt retrograde channel and Gaussian retrograde channels have bee...
متن کامل